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Abstract 

We show that tests for adverse selection in annuity markets using prices are not 
identified. Within the UK annuity market, different annuity products create the 
potential for a Rothschild-Stiglitz separating equilibrium as different risk types 
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suggest that prices are indeed consistent with this explanation. However, we show 
that this pattern of annuity prices would also result from the actions of regulated 
annuity providers who must reserve against cohort mortality risk. Annuity products 
that m ight attract different consumer risk types also have different risks for the 
provider. 
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ΫȢ )ÎÔÒÏÄÕÃÔÉÏÎ 

Ever since the development of the theoretical model of Rothschild and Stiglitz 

(1976) focusing on the rôle of asymmetric information in insurance markets, the 

search for empirical evidence on adverse selection has yielded conflicting findings 

depending on the characteristics of the particular market (Cohen and Siegelman, 

2010).  A common approach has been to investigate the positive correlation property 

(PCP), whereby higher-risk individuals buy more insurance.  In the context of life 

annuities, higher risk corresponds to higher life expectancy and a direct test would 

be that individuals who have private information about their life expectancy select 

into back-loaded annuity products and hence individuals who buy back-loaded 

products live longer.  However, PCP tests are not generally feasible because 

ÉÎÄÉÖÉÄÕÁÌÓȭ ÐÕÒÃÈÁÓÅÓ ÏÆ ÁÎÎÕÉÔÉÅÓ ÁÒÅ ÐÒÏÐÒÉÅÔÁÒÙ ÉÎÆÏÒÍÁÔÉÏÎ ÁÎÄ ÁÒÅ ÎÏÔ ×ÉÄÅÌÙ 

available.  An alternative test of the same phenomenon is whether annuity providers 

(life insurers) recognise adverse selection and price accordingly, leading to different 

ÍÏÎÅÙȭÓ ×ÏÒÔÈÓ ÆÏÒ ÄÉÆÆÅÒÅÎÔ ÁÎÎÕÉÔÙ ÐÒÏÄÕÃÔÓȢ Mitchell et al (1999) and Finkelstein 

and Poterba (2002) have examined the pricing of life annuities using the money's 

worth (MW) metric , defined as the ratio of the expected value of annuity payments 

to the premium paid .1  This empirical literature generally suggest that: (i) the MW  

is less than one; and (ii) the MW  of back-loaded annuities (such as escalating or real 

annuities where the expected duration is longer) is less than that for level annuities. 

For example, Finkelstein and Poterba (F&P) (2002, p.46Ɋ ÒÅÐÏÒÔÓ ÔÈÁÔ ÔÈÅ ÍÏÎÅÙȭÓ 

worth of level annuities for 65-year old males is 0.900, but for escalating annuities 

is 0.856. These two observations have been interpreted as evidence of adverse 

selection, that annuitants have more information about their life expectancy than 

insurance companies, which is then reflected in equilibrium annuity prices. 

In this paper we evaluate the identifying assumptions used to test for adverse 

selection through analysis of prices in annuity markets. We demonstrate that these 

same facts would also be consistent with a model where there is no adverse selection 

                                                 

1 James and Song (2001) and Cannon and Tonks (2008) provide an international comparison of 
ÍÏÎÅÙȭÓ ×ÏÒÔÈ ÓÔÕÄÉÅÓ ÁÃÒÏÓÓ Á ×ÉÄÅ ÒÁÎÇÅ ÏÆ ÃÏÕÎÔÒÉÅÓȢ 3ÉÎÃÅ ÔÈÅÎ ÆÕÒÔÈÅÒ ÁÎÁÌÙÓÅÓ ÈÁÖÅ ÂÅÅÎ 
conducted for Canada (Milevsky and Shao, 2011); for Germany (Kaschützke and Maurer, 2011); for 
the Netherlands (Cannon, Stevens and Tonks, 2012); for Singapore (Fong, Mitchell and Koh, 2011); 
and for Switzerland (Bütler and Staubli, 2011). 
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and where the variation in annuity rates for different types of annuity were due to 

the different costs of supplying annuities.  The providers of annuity contracts are 

exposed to the survival or conversely mortality risks of annuitants. Either because 

life insurers are prudent or because of regulatory requirements, riskier liabilities 

such as escalating or real annuities have to be priced to ensure sufficient reserves 

are available and matched to similar assets and these effects make them more costly. 

Although idiosyncratic mortality risks are diversified in a large pool of annuitants, 

a life insurer still faces the risk from predicting cohort  mortality over a long period. 

The route by which this cohort risk and adverse selection affect annuity prices is 

the same, namely the duration of the annuity.  This makes identifying the 

importance of the two explanations for annuity prices difficult.  In this paper we 

quantify the costs of these cohort mortality  risks and show they are sufficiently large 

to explain much of the observed variations in the monÅÙȭÓ ×ÏÒÔÈȟ leaving a smaller 

rôle for adverse selection.   

The paper is structured as follows. In the next section we discuss the organisation 

of annuity markets in the UK, review the theory and evidence for adverse selection 

and discuss the consequences of mortality risk for annuity pricing . In section 3 we 

describe the conventional MW  measure, examine the implications of adverse 

ÓÅÌÅÃÔÉÏÎ ÁÎÄ ÐÒÕÄÅÎÔÉÁÌ ÒÅÓÅÒÖÉÎÇ ÆÏÒ ÔÈÅ ÍÏÎÅÙȭÓ ×ÏÒÔÈȟ ÓÕÍÍÁÒÉÓÅ ÔÈÅ ÄÁÔÁ ÕÓÅÄ 

in our empirical analysis, and provide time series calculations of the MW by 

annuitant age and product type. In section 4 we show how a probability distribution 

of the value of an annuity can be constructed from a stochastic mortality model.  

We use this to measure the risk for annuities and the consequences when a 

researcher calculates the MW  based on a deterministic projection of mortality , but 

when annuity providers are pricing to take into account the financial risk associated 

with mortality risk and a given set of interest rates. Section 5 concludes. 

άȢ  !ÄÖÅÒÓÅ 3ÅÌÅÃÔÉÏÎ ÁÎÄ !ÎÎÕÉÔÙ -ÁÒËÅÔÓ 

In this section we describe the structure and regulation of UK annuity markets and 

explain how the theory of adverse selection developed for general insurance relates 

to the specific characteristics of annuities markets. We summarise the results of 

MW and PCP tests and discuss whether they constitute evidence for adverse 
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selection.  We then discuss the need for life insurers to reserve against long-run 

cohort risk that cannot be diversified away by pooling a large number of annuitants 

and the consequences of this for the pricing of annuities. 

7Å ÆÉÒÓÔ ÄÅÓÃÒÉÂÅ ÔÈÅ ÓÔÒÕÃÔÕÒÅ ÏÆ ÔÈÅ 5+ȭÓ ÁÎÎÕÉÔÙ ÍÁÒËÅÔÓȢ $ÕÅ ÔÏ ÔÈÅ ÃÏÍÐÕÌÓÏÒÙ 

annuitisation of wealth accumulated in tax-efficient defined contribution personal 

pension schemes up until 2014, the UK annuity market was the largest in the world, 

accounting for almost half of all annuities sold worldwide (worth £11 billion per year; 

HM Treasury, 2010).2 A variety of annuity types were allowed by the tax authorities 

so, in principle, life insurers could price annuities to separate different risk types as 

described in the Rothschild-Stiglitz (1976) model (henceforth RS), and extended to 

the annuity market  by Eckstein, Eichenbaum and Peled (1985). The RS model 

assumes that the insurer can observe the quantity of insurance purchased, but this 

is not a valid assumption in the annuity market. Anyone purchasing an annuity 

would almost certainly have some additional annuitised wealth (through pensions 

or annuities purchased from other providers) and non-annuitised wealth (both 

financial and housing assets), none of which are observable by the life insurer. Even 

if a life insurer did observe the proportion of wealth annuitised, an annuitant could 

still choose to consume less than their annuity income initially and save in a non-

annuity product and this could undermine the ability of life insurers to separate 

different risk types. Finkelstein, Poterba and Rothschild (2008, Figure 4) illustrate 

numerical simulations showing that to separate individuals it would be necessary to 

offer an annuity product to short -lived individuals where payments in the distant 

future (above age 90) were negligible and no such annuity types are observed in 

practice. In fact, Abel (1985) and Walliser (2000) show that the combination of 

unobservable quantities and adverse selection can result in a pooling equilibrium.  

We conclude that the theoretical literature on annuities is ambivalent on whether 

adverse selection will be characterised by a separating or pooling equilibrium.  

                                                 

2 Despite some exemptions and changes to the rules during this period, most individual DC pension 
scheme participants had to annuitise 75 per cent of personal pension wealth accumulated in a tax-
exempt savings vehicle by age 75. This requirement was removed in March 2014. 
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Turning to the empirical evidence, F&P (2002) demonstrate that the pattern of UK 

annuity prices for different product types is consistent with adverse selection. There 

are two general product types that might signal life expectancy: first, annuities 

×ÈÅÒÅ ÔÈÅ ÆÉÒÓÔ ÆÉÖÅ ÙÅÁÒÓȭ ÐÁÙÍÅÎÔÓ ÁÒÅ Ȱguaranteedȱ (i.e. not life contingent) have 

less insurance than simple annuities and are more valuable to a short-lived 

annuitant who values bequests (ȰÆÒÏÎÔ-loadedȱ annuities). Second, annuities whose 

ÐÁÙÍÅÎÔÓ ÁÒÅ ÅÓÃÁÌÁÔÉÎÇ ÉÎ ÎÏÍÉÎÁÌ ÔÅÒÍÓȟ ÏÒ ÉÎÄÅØÅÄ ÔÏ ÉÎÆÌÁÔÉÏÎ ÁÒÅ ȰÂÁÃË ÌÏÁÄÅÄȱ 

and should be more valuable to longer-lived annuitants. F&P (2002) show that the 

MW of back-loaded annuities are lower than the MW of front-loaded annuities, 

consistent with the predictions of a separating equilibrium: henceforth we refer to 

this as the price test. This price test computes the expected present value of an 

annuity stream, and relies upon using projected mortalities. Either impli citly or 

explicitly  these are uncertain forecasts raising the question of how to incorporate 

forecast uncertainty explicitly into the evaluation of annuity prices.  

An alternative test for establishing the presence of adverse selection, is to check the 

positive-correlation property (Chiappori et al, 2006), since higher-risk (i.e. longer-

lived) individuals should purchase more longevity insurance.  Using data on 

individual policies from a life insurer for 1980-98, F&P (2004) show that annuitants 

who purchase an annuity with a guarantee period tend to be shorter-lived and those 

who buy an escalating or real annuity are longer lived, consistent with the RS 

separating equilibrium. Using policies from another company for 1988-94, Einav, 

Finkelstein and Schrimpf (2010) find less conclusive evidence, since annuitants who 

purchase an annuity with a ten-year guarantee are longer lived than those with a 

five-year guarantee (and in some cases longer-lived than those with no guarantee).   

PCP tests for asymmetric information have been criticised by De Meza and Webb 

(2014) who argue that, under the standard assumptions of actuarially fair pricing 

and identical preferences, the availability  of contracts with different insurance 

coverage implies the existence of asymmetric information. This is because under 

symmetric information all risk-averse individuals would choose full cover: the 

presence of multiple contracts only shows that at least some of the standard 

assumptions are invalid, not that there is asymmetric information. In the context of 
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accident insurance, De Meza and Webb propose modifying the standard set of 

assumptions to allow for differential  claims-processing costs across contracts, with 

claims costs non-increasing in the level of insurance cover (for example, due to fixed 

costs). The inclusion of such costs can then generate multiple cover levels under 

symmetric information ( where individuals will choose their level of cover taking 

into account expected claims costs). When there is asymmetric information, a non-

zero correlation (between risk-types and cover) does not imply asymmetric 

information ; nor does a zero correlation exclude asymmetric information.  However, 

this issue of claims-processing costs cannot be simply translated to the life-annuity 

scenario, since life annuities pay a stream of payments dependent on life length and 

there is no direct analogue of a claim or associated costs. 

A final issue is that annuity choice may be affected by behavioural issues. A typical 

annuitant might only be expected to purchase one annuity and there is no scope for 

learning about the product through experience: so annuity purchase is a plausible 

scenario for decisions to be affected by framing effects (Benartzi et al, 2011; Beshears 

et al, 2013). Indeed, the finding in Einav et al. (2010) that the vast majority (87 per 

cent) of annuities had a five-year guarantee (ÔÈÅ ȰÍÉÄÄÌÅ ÏÐÔÉÏÎȱ) suggests that 

choice of annuity type is due to institutional or behavioural factors  and so selection 

effects are not just due to asymmetric information.  

We now turn to how cohort  mortality risk affects annuity pricing. Compared to 

other forms of insurance, the cost of a providing an annuity is peculiarly difficult to 

estimate because of the long-term natu re of the product: a 65-year old purchasing 

an annuity might live for another forty years.  This means that estimates of costs 

must be based upon very long-term projections and introduces an element of 

uncertainty for the insurer that is less important in general insurance.  Given that 

the uncertainty of mortality forecasts increases with the time horizon, it also follows 

that annuities with a longer duration are also higher risk to the annuity provider, 

suggesting that they may need to offer a lower annuity rate if the annuity provider 

is risk averse or facing regulatory constraints, and this would automatically result 

in a lower MW for back-loaded products. 
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Annuities in the UK are sold by life insurers whose liabilities consist of future 

annuity payments, and whose assets are predominantly high-quality bonds. 3 

Annuities payments defined in nominal terms can be matched with conventional 

bonds, and those defined in real terms matched to  inflation -linked bonds,4 so the 

risk to forecasting cohort mortality con stitutes the largest component of the total 

risk to selling an annuity.  Because individual annuitants lack either adequate 

incentives or the ability to monitor the solvency of life insurers, there is a rationale 

for government regulation of long-term insurance, which has been recognised in 

the UK since a series of insolvencies of life insurers led to the 1869 Insurance Act.5  

The basis of subsequent prudential regulation is the requirements of larger reserves 

for riskier products so that, even if the life insurer is not risk averse, it may still have 

to behave as if it is.6  Indeed, the regulator may also encourage life insurers to price 

conservatively.  For example, in 2007, the chairman of the Financial Services 

Authority wrote to life insurers recognising that companies would usually make 

assumptions based on their own mortality experiences, but adding  

ȰȢȢȢÉÆ ÔÈÉÓ ÉÓ ÎÏÔ ÐÏÓÓÉÂÌÅ ×Å ×ÏÕÌÄ ÅØÐÅÃÔ ÆÉÒÍÓ ÔÏ ÃÏÎÓÉÄÅÒ ÔÈÅ ÄÉÆÆÅÒÅÎÔ 
ÉÎÄÕÓÔÒÙ ÖÉÅ×Ó ÉÎ ÔÈÉÓ ÁÒÅÁ ÁÎÄ ÔÏ ÅÒÒ ÏÎ ÔÈÅ ÓÉÄÅ ÏÆ ÃÁÕÔÉÏÎȢȱ (FSA Dear CEO 
letter, April 2007)  

                                                 

3 Life insurers must provide detailed accounts to the regulator referred to as the FSA Returns.  
Where investing in corporate bonds results in a higher yield (a risk premium), life insurers are not 
allowed to use this to value their liabilities.  For example, see the note in Norwich Union Annuity 
Limitedȟ !ÎÎÕÁÌ &3! )ÎÓÕÒÁÎÃÅ 2ÅÔÕÒÎÓ ÆÏÒ ÔÈÅ ÙÅÁÒ ÅÎÄÅÄ έΫÓÔ $ÅÃÅÍÂÅÒ άΪΪί ɉÐÁÇÅ ίέɊȡ Ȱ)Î 
accordance with PRU 4.2.41R, a prudent adjustment, excluding that part of the yield estimated to 
represent compensation for the risk that the income from the asset might not be maintained, . . .  
×ÁÓ ÍÁÄÅ ÔÏ ÔÈÅ ÙÉÅÌÄ ÏÎ ÁÓÓÅÔÓȢȱ  4ÈÅ ÒÅÔÕÒÎ ÇÏÅÓ ÏÎ ÔÏ ÓÁÙ ÔÈÁÔ !!!-rated corporate bonds had 
yields reduced by 0.09 per cent, A-rate by 0.32 per cent and commercial mortgages by 0.41 per cent.   
4 In the U.K., where inflation -adjusted annuities are sold, it is possible to hedge indexed annuities 
by purchasing government bonds that are indexed to the Retail Price Index. The FSA Returns make 
explicit that the different types of annuities are backed by different assets.  For example, the note 
in Norwich Union Annuity Lim ited, Annual FSA Insurance Returns for the year ended 31st December 
άΪΪί ɉÐÁÇÅ ίΪɊȡ Ȱ.ÏÎ-linked and index-linked liabilities are backed by different assets and hence 
have different valuation interest ratÅÓȢȱ  
5 More recently a leading insurer (Equitable Life) became insolvent in 2000, resulting in the 
government ultimately agreeing to compensate pensioners in 2010.  Plantin and Rochet (2009) 
analyse the appropriate role and design of prudential regulation of insurance companies. 
6 Text books such as Booth et al (2005) say explicitly that, actuaries have always taken risk into 
account when pricing annuities.   
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The prudential regulations have been strengthened by the EU-wide changes to 

insurance regulation enshrined in Solvency II, which will take effect from 2016.7  

Solvency II applies to the insurance industry the risk-sensitive regulatory approach 

adopted in the Basel reforms for the banking industry.  Under the proposal for 

Solvency II, life insurance companies are required to allow explicitly for uncertainty 

in their valuations:  

"the technical provision under the Solvency II requirement is the sum of the 
best estimate and the risk margin, . . ., the best estimate is defined as the 
probability -weighted average of future cash flows . . . The probability-weighted 
approach suggests that an insurer has to consider a wide range of possible 
future events: for example, a 25% reduction in mortality rates may have a small 
probability of occurrence but a large impact on the cash flows. However, the 
assumptions chosen to project the best estimated cash flows should be set in 
a realistic manner, whereas the prudent allowance for data uncertainty and 
model error should be taken into account in the risk margin calculation." 
(Telford et al, 2011; paras. 7.2.1 - 7.2.2.3). 

 

In the UK each life insurer must declare the actuarial assumptions used to value its 

liabilities, by comparing the mortalities (approximately one-year death 

probabilities) used in its own calculations with the mortalities in the benchmark 

tables produced by the Institute of ActuarÉÅÓȭ #ÏÎÔÉÎÕÏÕÓ -ÏÒÔÁÌÉÔÙ )ÎÖÅÓÔÉÇÁÔÉÏÎ 

(CMI).   The CMI collects data from all of the major life insurers: aggregates, 

anonymises and then analyses the pooled data.  So the CMI tables of mortality 

approximate to the average mortalities across the whole industry.  The figures 

presented in life insurÅÒÓȭ &3! ÒÅÔÕÒÎÓ ÁÒÅ ÔÈÅÎ ÃÏÍÐÁÒÅÄ to this average and are 

summarised in Table 1 and illustrate in Figure 1.8 

[Table 1 and Figure 1 about here] 

                                                 

7 http://ec.europa.eu/internal_market/insurance/docs/solvency/131002_draft-directive_en.pdf 
8 The CMI tables include four benchmark life tables for different annuity  groups: PCMA00, RMC00, 
RMV00 and PPMC00. PCMA00 reports the mortalities of members of occupational defined-benefit 
pension schemes administered by life insurers; RMC00 and RMV00 summarise the mortality 
evidence of the original DC pensions - retirement annuity contracts for self-employed workers; RMV 
ÉÓ ÆÏÒ ÐÅÎÓÉÏÎÅÒÓ ÉÎ ÒÅÃÅÉÐÔ ÏÆ Á ÐÅÎÓÉÏÎ ɉȰÖÅÓÔÅÄȱɊ ÁÎÄ 2-# ÉÓ ÆÏÒ ÂÏÔÈ ÐÅÎÓÉÏÎÅÒÓ ÉÎ ÒÅÃÅÉÐÔ ÏÆ Á 
ÐÅÎÓÉÏÎ ÁÎÄ ÆÏÒ ÔÈÏÓÅ ÓÔÉÌÌ ÍÁËÉÎÇ ÃÏÎÔÒÉÂÕÔÉÏÎÓ ɉȰÃÏÍÂÉÎÅÄȱɊȠ ÁÎÄ 00-#ΪΪ ÒÅÐÏÒÔÓ ÍÏÒÔÁÌÉÔÉÅÓ ÏÆ 
DC personal pensioners.  Using a different benchmark would not affect our conclusions. 

http://ec.europa.eu/internal_market/insurance/docs/solvency/131002_draft-directive_en.pdf
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Figure 1 shows that for ages above 68, every life insurer assumes lower mortality 

rates than the benchmark.  Some of the variation in assumptions between 

companies must be due to genuine variations in mortality of the annuitants, but it 

is obviously impossible that every company has lower mortality than the average, 

represented by the benchmark.  This is prima facie evidence that firms are building 

some allowance for mortality risk into their valuations.  

In section 3 we show theoretically how prudential reserving requirements will affect 

annuity prices. Since there is no disclosure requirement on the value of cohort 

mortality risk assumed by life insurers, we cannot measure the effect on annuity 

ÐÒÉÃÅÓ ÆÒÏÍ ÉÎÆÏÒÍÁÔÉÏÎ ÉÎ ÔÈÅ ÌÉÆÅ ÉÎÓÕÒÅÒÓȭ ÒÅÔÕÒÎÓ. In section 4 we quantify 

mortality risk through the widely-used model of Lee and Carter (1992) to show that 

the effect is large enough to affect MW tests in practice.  

έȢ -ÏÎÅÙȭÓ 7ÏÒÔÈ #ÁÌÃÕÌÁÔÉÏÎÓ 

In this section ×Å ÄÅÆÉÎÅ ÔÈÅ ÍÏÎÅÙȭÓ ×ÏÒÔÈ ÏÆ ÁÎ ÁÎÎÕÉÔÙ ÐÒÏÄÕÃÔ ÁÎÄ ×Å furnish 

the theoretical proof that  it will not equal one if the researcher uses a different life 

table from the life insurer, either due to adverse selection or risk. We then describe 

the data available on annuity price quotes over the period 1994-2012 and estimate 

ÔÈÅ ÍÏÎÅÙȭÓ ×ÏÒÔÈ ÆÏÒ ÔÈis period. 

3.1 4ÈÅ -ÏÎÅÙȭÓ 7ÏÒÔÈ 

4ÈÅ ÃÏÎÖÅÎÔÉÏÎÁÌ ÍÅÁÓÕÒÅ ÏÆ ÔÈÅ ÖÁÌÕÅ ÏÆ ÁÎ ÁÎÎÕÉÔÙ ÉÓ ÔÈÅ ÍÏÎÅÙȭÓ ×ÏÒÔÈ 

(Warshawsky, 1988; Mitchell et al, 1999), which compares the expected present 

value of the annuity payments with the price paid for the annuity.  Consider the 

expected present value of a stream of annuity payments, starting with a unit 

payment and then rising by an escalation factor { }0,0.05gÍ  per period for an 

annuity sold to someone age x  at time t  

(1) ὥȟὫ ḳВ ρ Ὣ Ὑȟί ȿȟ                  ί ȿȟḳБ ὴ ȟ   

where Rt,i  is the discount factor at time t  for a pure discount bond of duration i and 

pt+j,x+j is the one-period survival probability for the annuitant who is age x+j in 

period t+j (that is the probability of living one more period conditional on being 

alive at the beginning of the period) and sx+i|x,t  is thus the probability of someone 
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aged x at time t  living to age x+i or longer. In the absence of administrative and 

marketing costs, ὥȟὫ would be a life insurÅÒȭÓ ÌÉÁÂÉÌÉÔÙ from selling a life annuity 

of unit payments and hence the annuity rate offered by the life insurer would be  

(2) ὃὲὲόὭὸώ ὶὥὸὩ Ὣ ȟ
ȟ
 

В ȟ ȿȟ
  

where we have added the super-ÓÃÒÉÐÔ ȰLife insurÅÒȱ ÔÏ s to emphasise that this is 

the survival probability used by the life insurer (calculated at time t , but we leave 

that implicit for notational simplicity) . To calculate the MW , a researcher would use 

the formula  

(3) ὓὡ Ὣ ȟ ὃὲὲόὭὸώ ὶὥὸὩ Ὣ ȟ ὥὫ ȟ  

В ρ Ὣ Ὑȟί ȿȟ

В ρ Ὣ Ὑȟί ȿȟ
 

 

which makes it explicit that the researcher may use different survival probabilities 

from a life insurer. We assume that the researcher correctly identifies the discount 

factors used by life insurers and therefore do not disti nguish between the discount 

factors used in pricing the annuity or evaluating the MW . 

[Figure 2 about here] 

With respect to the difference in survival probabilities, we illustrate two possible 

cases in Figure 2. In the first case (Panel A), we assume that there are two types of 

individual, high and low risk, who know their type and know that they have different 

survival probability curves. In an adverse-selection separating equilibrium, high -

risk types choose escalating annuities (Ὣ πȢπυ) and low-risk types choose level 

annuities (Ὣ  π). Since the type is revealed by annuity choice, the life insurer is 

able to use the correct survival probabilities in pricing the annuity. 

However, the researcher is faced with using data provided by the CMI, which only 

publishes one set of life tables, not distinguishing annuitants with different types of 

annuity.  This pooled life table will have a survival probability denoted by the heavy 

black line in Panel A which lies between the low and high-ÒÉÓË ÔÙÐÅÓȭ ÃÕÒÖÅÓȢ  (ÅÎÃÅ 

the researcher will systematically under-estimate the survival probability when 

calculating the MW  of annuities purchased by high-risk individuals and over-
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estimate the survival probability of annuities purchased by low-risk individuals.  

The estimated MW  for level and escalating annuities would be 

ὓὡ Ὣ πȟὰέύ ὶὭίὯȟ
В Ὑȟί ȿȟ

В Ὑȟί ȿȟ
 
  

(4)   

ὓὡ Ὣ πȢπυȟὬὭὫὬ ὶὭίὯȟ
В ρȢπυὙȟί ȿȟ

В ρȢπυὙȟί ȿȟ
 
  

We now demonstrate that the MW  of the escalating annuity (Ὣ πȢπυ) will be lower 

than that of the level annuity  (Ὣ π). 

Proposition  1: Where a life insurer sells two annuity types in a separating 

equilibrium, then ὓὡὫ πȢπυȟὬὭὫὬ ὶὭίὯȟ ὓὡ Ὣ πȟὰέύὶὭίὯȟ  

Proof:  We assume that the survival curves for high- and low-risk never cross for 

which a sufficient condition is that the mortality of a high -risk individual is always 

lower than the mortality of a low -risk individual o f the same age in the same year. 

In which case the survival probabilities can be ordered as follows 

Ὥᶅȡ ί ȿȟ ί ȿȟ ί ȿȟ  

It then follows that  

Ὥᶅȡ Ὑȟί ȿȟ Ὑȟί ȿȟ ȟ ὥὲὨ   ρȢπυὙȟί ȿȟ ρȢπυὙȟί ȿȟ  

Where we assume that the same interest rates are used by both the life insurer and 

the researcher, but where the life insurer is pricing annuities using either the high- 

or low-risk survival probabilities as appropriate, and the researcher uses the average 

survival probability.  Summing over all future years: 

Ὑȟί ȿȟ Ὑȟί ȿȟ ȟ   

ὥὲὨ ρȢπυὙȟί ȿȟ ρȢπυὙȟί ȿȟ  

ρ
В Ὑȟί ȿȟ

В Ὑȟί ȿȟ

ȟρ
В ρȢπυὙȟί ȿȟ

В ρȢπυὙȟί ȿȟ
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ρ
В Ὑȟί ȿȟ

В Ὑȟί ȿȟ

В ρȢπυὙȟί ȿȟ

В ρȢπυὙȟί ȿȟ

 

ρ
 ȟ ȟ

Ȣ ȟ  ȟ
 QED  

 

In the second case, illustrated in Panel B of Figure 2, we assume there is no adverse 

selection and no separating equilibrium but the life insurer is uncertain of future 

values of the relevant survival probabilities. In line with the Solvency II framework, 

we use the Value-at-Risk (VaR) as a guide to suitable reserving, by which we mean 

that insur ers price off the tail of probability distribution of future mortality such 

that there is a 95 per cent chance of having sufficient assets to meet the actual risky 

liabilities.  We plot the forecast survival probabilities with a central projection and 

upper and lower confidence intervals. In the conventional MW calculations, 

researchers implicitly use the central projection  as the price of the annuity contract, 

but a risk-averse life insurer would price using the upper confidence interval and 

hence the MW  would be  

ὓὡ Ὣ π ȟ

В Ὑȟί ȿȟ

В Ὑȟί ȿȟ
 ȢȢ  

(5) 

ὓὡ Ὣ πȢπυȟ
В ρȢπυὙȟί ȿȟ

В ρȢπυὙȟί ȿȟ
 ȢȢ  

As with the adverse selection case, part of the problem is that the researcher will 

ÕÓÅ ÔÈÅ Ȱ×ÒÏÎÇȱ ÓÕÒÖÉÖÁÌ ÐÒÏÂÁÂÉÌÉties; conversely in this case the life insurer uses 

the same survival probability curve to value both annuity types. The relationship 

ÂÅÔ×ÅÅÎ ÔÈÅÓÅ Ô×Ï ÍÏÎÅÙȭÓ ×ÏÒÔÈÓ ÄÅÐÅÎÄÓ ÏÎ ÔÈÅ ÕÎÃÅÒÔÁÉÎÔÙ ÏÆ ÔÈÅ ÆÏÒÅÃÁÓÔ ÏÆ 

future survival probabilities, and the exteÎÔ ÔÏ ×ÈÉÃÈ ÌÉÆÅ ÉÎÓÕÒÅÒÓȭ ÐÒÉÃÅ ÁÎÎÕÉÔÉÅÓ ÔÏ 

take account of mortality uncertainty. Define the range between the average and 

the upper confidence interval of the survival distribution function by the 

ȰÃÏÎÃÏÒÄÁÎÃÅ ÒÁÔÉÏȱȟ •, for each future year i, where 
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 • ȿȟ

ȿȟ
 ȢȢ  

and where we omit x and t subscripts for notational simplicity. If there were no 

uncertainty about future survival probabilities, and if life insurers priced at the 

central projection, then • ρȠ but when there is uncertainty about future survival 

probabilities, then π • ρȟ and lower values of •  are associated with more 

uncertainty. 9  We shall be interested in the scenario: • •  i.e. where 

uncertainty increases with the time horizon, and hence the concordance ratio falls 

as projections are made at higher ages.  There are three reasons for the uncertainty 

of survival probabilities to increase over time. First, as is conventionally the case, 

forecast error increases with time horizon. Second, actuarial models forecast 

mortality, but the variable of interest is survival pr obability: survival probabilities 

further into the future compound a larger number of uncertain death probabilities. 10 

Third, regardless of the model used, survival probabilities immediately after the sale 

of an annuity will be very close to one: in our data the crude death rate for 65-year-

olds over the period 1983-2000 is 0.018. The one-year survival probability is then 

0.982, and the concordance ratio thus cannot be less than 0.982 because the upper 

confidence interval probability cannot exceed one. As survival probabilities fall this 

constraint is relaxed, and so the concordance ratio can decrease. Using the 

definition of the concordance ratio in to (5), then 

 ὓὡὫ
В

 ȢȢ  ȢȢ

В
 ȢȢ В ύ Ὣ•  

where 

 ύ Ὣ ḳ
 ȢȢ

В
 ȢȢ ȟ    В ύ Ὣ ρ 

i.e. MW is a weighted average of our measure of the concordance ratios. 

                                                 

9 The concordance ratio is inversely related to the uncertainty in the survival probabilities. We plot 
a sample concordance ratio for our estimated model in Appendix A.2, which illustrates that this 
ratio is falling (uncertainty increasing) with the time horizon.  
10 Taking two specific cases from equation (1): ί ρ ή , which depends on one random 
variable but ί ρ ή ρ ή  depends on two random variables. 
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Proposition 2:  Where there is no selection and life insurers prudently price 

annuities from the upper confidence interval, then ὓὡὫ πȢπυ ὓὡὫ π if  

• •. 

Proof:  From the definition of wi  (g), an increase in Ὣ reduces ύ Ὣ  for smaller 

values of i and increases ύ Ὣ  for larger values of i. Since • •ȟ MW is a 

weighted average of the concordance ratios. An increase in Ὣ adjusts the weights so 

that more weight is placed on the values of  •  at longer horizons where • is 

smaller (i.e. uncertainty is greater) and hence MW falls.   QED 

Ceteris paribus, an increase in g corresponds to an increase in the expected duration 

ÏÆ ÔÈÅ ÌÉÆÅ ÁÎÎÕÉÔÙȡ ÉÔ ÉÓ ÍÏÒÅ ȰÂÁÃË-ÌÏÁÄÅÄȱȢ These two propositions show that a 

researcher using publicly available data would finÄ ÔÈÅ ÍÏÎÅÙȭÓ ×ÏÒÔÈ ÆÏÒ Á ÂÁÃË-

loaded annuity to be less than that of a level annuity: this difference may be due 

either to an adverse-selection separating equilibrium or to prudential pricing. Our 

proof that prudential pricing (Proposition 2) results in a ÌÏ×ÅÒ ÍÏÎÅÙȭÓ ×ÏÒÔÈ ÆÏÒ 

escalating annuities depends on the fact that uncertainty increases with time 

horizon , and back-loaded annuities have a great percentage of the present value at 

longer time horizons. The proof for selection (Proposition 1) depends on the fact 

that higher -risk individuals should choose back-loaded annuities. The two 

propositions ÓÈÁÒÅ ÔÈÅ ÉÎÔÕÉÔÉÏÎ ÔÈÁÔ ÔÈÅ ÃÁÌÃÕÌÁÔÅÄ ÍÏÎÅÙȭÓ ×ÏÒÔÈÓ ×ÉÌÌ ÄÉÆÆÅÒ: (i) 

because the researcher uses a different set of survival probabilities from the life 

insurer; and (ii) because real and escalating annuities have longer duration than 

level annuities. 

3.2 Description of the data  

Data on UK annuity rates for males at various ages are taken from MoneyFacts over 

the period August 1994 to April 2012, and an average monthly value is computed 

which corresponds to the annuity rate in equation (2). These are compulsory-

purchase annuities which are bought in the decumulation phase of a defined 
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contribution pension scheme. 11  The discount factor Rt,j  (which we assume to be risk 

free) may be inferred from the yield curve on government bonds at the time of the 

annuity saleȢ 4ÈÉÓ ÉÓ ÌÉËÅÌÙ ÔÏ ÂÅ Á ÇÏÏÄ ÁÐÐÒÏØÉÍÁÔÉÏÎ ÔÏ ÌÉÆÅ ÉÎÓÕÒÅÒÓȭ ÒÁÔÅÓ we have 

noted above that life insurers predominantly back their liabilities with g overnment 

bonds and have to adjust rates of return on other assets for risk so this must be a 

good approximation to the rates they use.12  Secondly, life insurers approximately 

match their annuity liabilities wi th government bonds.13 

In Figure 3 we illustrat e the annuity rate series for a 65-year old male over time 

compared with government bond data, and summary statistics of these data for 

nominal and real variables are presented in Tables 2 and 3. It can be seen that 

nominal annuities approximately track th e nominal bond yield and analogously for 

real annuities: annuity rates are highly correlated with long-term bond yields, and 

the average difference in these two series over the sample period was 2.86%. We 

also compare the two sub-periods up to the financial crisis (Northern Rock bank 

run in August 2007) and since the onset of the crisis. Following the crisis, both 

short-term (base rate) and long-term government bond yields have fallen, and this 

has been reflected in a fall in annuity rates. Level annuities pay a constant annuity 

payment in nominal terms throughout the lifetime of the annuitant; r eal annuities 

ÈÁÖÅ ÐÁÙÍÅÎÔÓ ÔÈÁÔ ÒÉÓÅ ÉÎ ÌÉÎÅ ×ÉÔÈ ÔÈÅ 5+ȭÓ 2ÅÔÁÉÌ 0ÒÉÃÅ )ÎÄÅØ, and escalating 

annuities incorporate an escalation factor of five per cent per annum. 

[Tables 2 and 3, and Figure 3 about here] 

4ÈÅ ÒÅÍÁÉÎÉÎÇ ÄÁÔÁ ÔÈÁÔ ×Å ÎÅÅÄ ÔÏ ÅÓÔÉÍÁÔÅ ÔÈÅ ÍÏÎÅÙȭÓ ×ÏÒÔÈ ÁÒÅ ÔÈÅ ÍÏÒÔÁÌÉÔÙ 

projections.  We used a series of life tables for annuitants published by the CMI, and 

                                                 

11 For example, in the UK in July 2009, the Prudential would sell an annuity for £10,000 to a 65-year 
old man which would pay a monthly income of £61, or £732 annually for life: the annuity rate would 
be ὃ ȟ χσςρπȟπππϳ χȢσςϷ. 
12 Details of the notional yields, credit rating s and corresponding adjustments are reported in the 
FSA returns; see also footnote 3.  Price risk is relatively unimportant since bonds are typically held 
to maturity.  
13 CGFS (2011) provides a review of international insurance regulation and notes that this matching 
can be duration matching which only partially matches liability and asset cash flows and cash-flow 
matching which perfectly matches the flows.  The footnotes of various FSA returns note that perfect 
matching is impossible and that there is a small residual risk. 
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started using each new table from a year before the publication date, on the 

argument that the broad outline of these data may have been known to life insurers 

before actual publication (and life insurers would also have been able to analyse the 

mortality exper ience of their own annuitants). The 0-,βΪ ɉȰ0ÕÒÃÈÁÓÅÄ -ÁÌÅ ,ÉÆÅȱɊ 

ÔÁÂÌÅ ×ÁÓ ÐÕÂÌÉÓÈÅÄ ÉÎ Ϋγγά ɉȰβΪȱ ÒÅÆÅÒÓ ÔÏ ÔÈÅ ÂÁÓÅ ÙÅÁÒɊȢ  !ÌÔÈÏÕÇÈ ÉÔ ÐÒÏÊÅÃÔÅÄ 

gradual increases in life expectancy, by the late 1990s it had become clear that the 

downward trend in mortality of pensioners was much stronger and the PML92 

tables (published 1999) revised life expectancy up by almost two years.  Further 

analysis of the reduction in mortality both for pensioners and people of below 

pension age (for which pension data were unavailable: life insurance data were used 

ÉÎÓÔÅÁÄɊȟ ÓÕÇÇÅÓÔÅÄ Á ȰÃÏÈÏÒÔȱ ÅÆÆÅÃÔȟ É.e. a discrete downward jump in mortality for 

people born after about 1930.  This led to a set of ȰÉÎÔÅÒÉÍ ÁÄÊÕÓÔÍÅÎÔÓȱ ÐÕÂÌÉÓÈÅÄ 

ÉÎ άΪΪάȡ ÔÈÅ ÍÏÓÔ ×ÉÄÅÌÙ ÕÓÅÄ ȰÍÅÄÉÕÍ ÃÏÈÏÒÔȱ ÁÄÊÕÓÔÍÅÎÔ ÉÓ ÉÌÌÕÓÔÒÁÔÅÄ ÈÅÒÅȢ  )Î 

άΪΪί ÉÎÆÏÒÍÁÔÉÏÎ ÏÎ ÔÈÅ ÍÏÓÔ ÒÅÃÅÎÔ ÁÎÎÕÉÔÁÎÔ ÍÏÒÔÁÌÉÔÙ ×ÁÓ ÐÕÂÌÉÓÈÅÄ ɉÔÈÅ ȰΪΪȱ 

table), which did not have an accompanying projection for changes into the future.  

!ÃÃÏÒÄÉÎÇÌÙ ÁÔ ÔÈÁÔ ÔÉÍÅ ÍÁÎÙ ÌÉÆÅ ÉÎÓÕÒÅÒÓ ÕÓÅÄ ÔÈÅ ȰΪΪȱ ÔÁÂÌÅ ÁÓ Á ÂÁÓÅ ÁÎÄ ÔÈÅÎ 

used the ȰÍÅÄÉÕÍ ÃÏÈÏÒÔȱ ÐÒÏÊÅÃÔÉÏÎ ÆÒÏÍ άΪΪΪ ɉÏÒ ÓÏÍÅ ÏÔÈÅÒ ÙÅÁÒɊ ÏÎ×ÁÒÄÓȢ 

3.3 %ÓÔÉÍÁÔÅÓ ÏÆ ÔÈÅ ɉ#ÏÎÖÅÎÔÉÏÎÁÌɊ -ÏÎÅÙȭÓ 7ÏÒÔÈ 

Figure 4 illustrate s the MW  of the monthly annuity rate data for men in the UK 

compulsory purchase market for three different ages (60, 65, 70,).  We calculate the 

MW  using the mortality projections from the relevant CMI tables for each period, 

with a short overlap. It can be seen that each new actuarial table results in a discrete 

increase in the MW  due to longer projected life expectancy, but the medium cohort 

projection and the PNML00 projection match almost exactly.  Within the sample 

period for a particular mortality table there is an apparent decline in MW for males 

of all ages, with a spike around 2008 reflecting low bond yields and downward shift 

in the nominal term structure, and a delayed reaction in terms of reduced annuity 

rates. The ÒÁÎÇÅ ÏÆ ÍÏÎÅÙȭÓ ×ÏÒÔÈÓ across the three ages fell considerably over time. 

[Figure 4 about here] 

Although Figure 2 showed a decline in annuity rates of about 2.5 per cent between 

1994 and 2000, Figure 4 shows that this does not correspond to as large a change in 
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MW : this fall is mainly explained by falls in interest rates and increases in life 

expectancy.    Table 4 provides formal tests of the differencÅÓ ÉÎ ÍÏÎÅÙȭÓ ×ÏÒÔÈÓ by 

age, guarantee period, and annuity product type, over the four sub-periods of our 

data corresponding to the relevant actuarial life table. In Panel A of Table 4 we 

compute the average MW  by age, and examine whether there are significant 

differences between the MW  of annuities at different ages. We test for the equality 

ÏÆ ÍÅÁÎÓ ÏÆ ÔÈÅÓÅ ÓÅÒÉÅÓȟ ÕÓÉÎÇ Á ȰÍÁÔÃÈÅÄ ÐÁÉÒȱ ÁÎÁÌÙÓÉÓ ÔÏ ÄÅÁÌ ×ÉÔÈ ÔÒÅÎÄÓ ÉÎ ÔÈÅ 

series. We calculate the t-statistic for the mean value of these differences, using 

Newey-West standard errors, with the relevant adjustment for the autocorrelation 

structure. The reversal of MW  by age over the period 2001-2004 for 70-year old 

males (t-stat on difference with 65-year old males is -1.94) is inconsistent with the 

suggestion of F&P (2002, p. 41) that lower MW at higher ages is evidence for 

asymmetric information.  14 

[Table 4 and Figures 5 and 6 about here] 

Figure 5 and Panel B of Table 4 shows that there is little difference in MW for 

annuities with different guarantee periods.  Figure 6 and Panel C of Table 4 reports 

the MW  for level, real and escalating annuities: we are able to confirm that back-

ÌÏÁÄÅÄ ÁÎÎÕÉÔÉÅÓ ÈÁÖÅ ÓÉÇÎÉÆÉÃÁÎÔÌÙ ÌÏ×ÅÒ ÍÏÎÅÙȭÓ ×ÏÒÔÈÓ than level annuities for 

each of the sub-samples. For example, for the most recent table 2004-2012 ɉÔÈÅ ȰΪΪȱ 

table), has MW for real and escalating annuities as 0.768 and 0.802 respectively, and 

the MW for level annuities as 0.859. Note that the MW of real annuities display a 

negative spike in 2008, which is due to the perverse movement in real bond yields 

at that time, as is clear from Figure 3. Comparing the beginning of the period to the 

end (the two periods when we are relatively confident about the appropriate 

mortality table t o use), there is some slight evidence that MW  has fallen and that 

ÔÈÅ ÇÁÐ ÂÅÔ×ÅÅÎ ÔÈÅ ÎÏÍÉÎÁÌ ÁÎÄ ÒÅÁÌ ÍÏÎÅÙȭÓ ×ÏÒÔÈ ÈÁÓ ÒÉÓÅÎȢ  4ÈÅ ÒÅÓÕÌÔÓ ÆÏÒ ÔÈÅ 

relative MW  of real and escalating are more mixed: the gap between them is often 

small and sometimes the MW  for real annuities is slightly higher than for escalating, 

                                                 

14 Cannon, Stevens and Tonks (2013) analyse the Dutch annuity market and also find an inverse 
ÐÁÔÔÅÒÎ ÏÆ ÍÏÎÅÙȭÓ ×ÏÒÔÈÓ ÂÙ ÁÇÅ ÆÏÒ ÔÈÅ ÐÅÒÉÏÄ άΪΪΫ-2010. 
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rather than lower. /ÖÅÒÁÌÌȟ ÏÕÒ ÁÎÁÌÙÓÉÓ ÆÏÒ ÔÈÅ ÍÏÎÅÙȭÓ ×ÏÒÔÈ ÏÖÅÒ ÔÈÅ ×ÈÏÌÅ ÐÅÒÉÏÄ 

largely confirms that of F&P (2002).15  The caveats are that the differences in MW  

by age or guarantee have disappeared by the end of the period.  

ήȢ 4ÈÅ 3ÔÏÃÈÁÓÔÉÃ -ÏÎÅÙȭÓ 7ÏÒÔÈ  

)Î ÔÈÅ ÓÅÃÔÉÏÎ έȢΫȟ ×Å ÓÈÏ×ÅÄ ÔÈÅ ÐÁÔÔÅÒÎ ÏÆ ÏÂÓÅÒÖÅÄ ÍÏÎÅÙȭÓ ×ÏÒÔÈÓ arising from 

life insurers reserving against cohort mortality risk.  Since life insurers do not report 

how they reserve for this risk, we quantify the effect by estimating the uncertainty 

in forecasting the probability of living pt+j, x+j  (equivalently the probability of dyi ng) 

and determining the amount of reserves needed when calculating the annuity price 

using the Value-at-Risk (VaR) approach discussed in section 3.16   

The estimation of death probabilities  is a staple of actuarial textbooks (Bowers et al, 

1997; Pitacco et al, 2009), but forecasting these variables is more problematic and 

usually relies on extrapolating the past trend, because models based on the causes 

of death are insufficiently precise to be used for prediction purposes.  The very long-

term nature of these forecasts, results in estimates that are subject to uncertainty 

from a variety of sources.  

First, there are issues with the timeliness and quality of the historical data. The 

estimates are based on data available only up to time t  (or possibly earlier if there 

are lags in data collection): in many countries sufficiently detailed data for p are 

simply unavailable and the U.K. is unusual in having reliable data for pensioners 

over a long time period. Since 1924, U.K. life offices have provided their firm-level 

data on survival experiences to a central committee of actuaries to create a large 

enough data set to enable reliable statistical analysis and long-term projections.  A 

second problem is that  observed death rates are only estimates of the underlying 

death probabilities due to sampling error;  this may be particularly acute when only 

small samples are available, which is often the case for the highest ages. A third 

                                                 

15 A robustness check on the differences in the log-ÍÏÎÅÙȭÓ ×ÏÒÔÈÓ ÉÓ ÐÒÏÖÉÄÅÄ ÉÎ !ÐÐÅÎÄÉØ !ȢΫȢ 
16 More formally, mortality m is the continuous-time analogue of the one-year death probability

1q p dm¹ - =ñ . In this paper we work entirely with one -year death probabilities and ignore the 

issue of when deaths occur within year: the quantitative effect of this is very small. 
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issue is that there may be structural changes in the data generating process 

associated with healthcare improvements over time, including: universal changes in 

health technology affecting all cohorts; the health of annuitants changing relative 

to that of the general population ; changes in health due to lifestyle changes; or 

changes in the health of pensioners due to changes in pension coverage.  In 

addition, such changes may have led to selection effects in the types of people 

enrolling into a pension scheme in the first place. 

Our estimated mortality model s ÕÓÅ ÔÈÅ 5+ȭÓ ÌÉÆÅ ÏÆÆÉÃÅ ÐÅÎÓÉÏÎÅÒ ÍÏÒÔÁÌÉÔÙ ÄÁÔÁȟ 

which is the largest and most commonly used data set for UK private pensions, for 

the years 1983-2000:17  the typical exposed to risk for a given age in a given year is in 

the range 5,000-10,000, although there are fewer for very high ages.  The total 

exposed-to-risk in 1983 is 356,552 and in 2000 it is 289,019.   

The cohort mortality model we use for our application  is Lee and Carter (1992), 

which has been widely accepted as a starting point for mortality  analysis.18 Cairns et 

al (2011) consider the forecasting performance of a range of mortality models, and 

by focusing on the uncertainty within the Lee -Carter model we are probably under-

ÅÓÔÉÍÁÔÉÎÇ ÔÈÅ ÅÆÆÅÃÔ ÏÆ ÍÏÄÅÌ ÕÎÃÅÒÔÁÉÎÔÙ ÏÎ ÔÈÅ ÍÏÎÅÙȭÓ ×ÏÒÔÈ ÆÏÒ Ô×o reasons. 

First, we make no allowance for different life insurers using different models which 

may add to the model uncertainty, and second within the class of mortality models 

Cairns et al (2011) note that the Lee-Carter model produces forecasts that are ȬÔÏÏ 

                                                 

17 Although detailed data on pensioner mortality were collected in the United Kingdom from 1948 
the data prior to 1983 have been lost (CMI, 2002). In this data set no 60-year old male died in 1998, 
so the log mortality was not defined: we replaced the zero value by 0.5 (which corresponded to the 
lowest mortality rate observed elsewhere in the data set).  A variety of alternative assumptions 
resulted in almost identical conclusions. 

18 -ÏÓÔ ÍÏÒÔÁÌÉÔÙ ÍÏÄÅÌÓȭ ÓÔÁÒÔÉÎÇ ÐÏÉÎÔ ÉÓ 'ÏÍÐÅÒÔÚȭÓ ,Á×ȡ that the logarithm of death rates tends 
to increase linearly  with age. In addition, the log of death rates decreases linearly over time.  Caveats 
to these statements are: these relationships are only approximately linear; that falls over time in 
mortality may be age dependent; and there are occasional structural breaks. There are also issues 
as to whether one should look at the logarithm of the death rate or an inverse logistic function, and 
whether the decline is a stochastic or deterministic trend (Cairns et al, 2009). In Table 6 below, as 
a robustness check we consider an alternative to the Lee-Carter approach: the Cairns-Blake-Dowd 
(2006) model, which uses the approximately linear relationship between log-mortality and age as a 
restriction in the estimation strategy. Details of estimating the Cairns-Blake-Dowd model and the 
expected annuity values from different mortality models and different sub-samples of the data, are 
provided in Appendices A.3 and A.4 respectively.   
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ÐÒÅÃÉÓÅȭ compared with the historical volatility of mortality; so our estimates of 

uncertainty are probably conservative. Lee and Carter (1992) model the one-year 

death probabilities as 

(6) ÌÎρ ὴ ÌÎή  ‖ ‐     ‐ ὔͯπȟ„  

which can be estimated by Least Squares (LS) from a singular-value decomposition 

method. Pitacco et al (2008) and Girosi and King (2008) suggest that LS was the 

most widely used estimator and we think it unlikely that life insurers would have 

used Maximum Likelihood (ML) during the period for which we have annuity rate 

data, but we report ML results for comparison. Our baseline results are estimated 

for ages 61-100 for the period 1983-2000 but for robustness we also estimate models 

for ages 60-100 and 65-100. An explanation of the technical issues implementing the 

Lee-Carter model are discussed in Appendix A.2. Regardless of the estimation 

procedure, forecasting is based upon a stochastic trend 

(7)    Ў‖ ‗          ͯ ὭὭὨπȟ„ . 

where the parameters ʎ and „  are estimated in a second-stage regression. As a 

robustness check we also consider a model where parameter ‖  follows a 

deterministic trend (Girosi and King, 2008). 

[Figure 7 about here] 

The results of our baseline estimates are illustrated in Figure 7. Consistent with 

'ÏÍÐÅÒÔÚȭÓ ÌÁ× ÔÈÅ ÁÌÐÈÁÓ ÁÎÄ ÂÅÔÁÓ ÁÒÅ ÁÐÐÒÏØÉÍÁÔÅÌÙ ÌÉÎÅÁÒ ÉÎ ÁÇÅȟ ÁÎÄ ÔÈÅ ËÁÐÐÁ 

follows something close to a stochastic trend. The fact that beta depends upon age 

shows that the trend in log-mortality is age dependent. 

Using the estimated alphas and betas and with projected kappas, we can project 

survival probabilities into the future using numeri cal methods: we conduct Monte 

Carlo experiments with 10,000 replications to calculate the probability distribution 

of the relevant stochastic variables (details in Appendix A.2).  Figure 8 shows the 

survival fan chart for a male aged 65 at the end of the period of our data in 2001.  

Such fan charts have been discussed in Blake, Dowd and Cairns (2008): there is 

relatively little uncertainty about the survival probability for the first few years , 

when the probability of dying is small and there is little scope for uncertainty.  
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However, by age 75 there is considerable uncertainty.  Note that an annuity which 

was more back-loaded (had longer duration) would have a higher proportion of its 

present value paid in the period of greater uncertainty and thus would be a riskier 

liability for a life insurer. 

[Figure 8 about here.] 

Underlying the calculations which generate the survival probabilities in Figure 8 we 

have 10,000 paths for the survival probabilities and we evaluate the corresponding 

annuity value of each of these for different interest rates to get estimates of the 

density function of the value of an annuity (i.e. the value of ὥ in equation (1)).  

[Figure 9 about here.] 

These density functions are illustrated in Figure 9 for different interest rates, 

assuming that the yield curve is horizontal.  For example, the probability density 

function when the interest rate is zero has a range between £17.68 and £21.36: if the 

insurance company priced the annuity on the expected value then the present value 

of £1 life annuity would be £19.65 and the implied annuity rate would be 5.11 per 

cent.  If the insurance company sold a large number of annuity policies at this price, 

it would break even in expectation but, given the distribution is approximately 

symmetric, about half of the time it  would make a loss. If the life insurer wished to 

ensure that it made a profit 90 per cent of the time, it would set the price at the 90th 

percentile of this distribution which would have  an expected present value of £20.20 

and the annuity rate would have to be 4.95 per cent, resulting in a MW of 0.97.  

Figure 9 also shows that, as the interest rate rises and the duration of the annuity 

falls, both the expected value of an annuity and the standard deviation fall. The 

riskiness of the distribution falls as interest rates rise, because with higher interest 

rates, future uncertainty is discounted more heavily.   

Table 5 shows the consequences foÒ ÔÈÅ ÍÏÎÅÙȭÓ ×ÏÒÔÈ ÉÆ Á ÌÉÆÅ insurer prices 

annuities from the relevant centile of the distribution of annuity values but the 

ÒÅÓÅÁÒÃÈÅÒ ÕÓÅÓ ÔÈÅ ÅØÐÅÃÔÅÄ ÁÎÎÕÉÔÙ ÖÁÌÕÅȢ  )Î ÔÈÉÓ ÔÁÂÌÅ ×Å ÃÏÍÐÕÔÅ ÔÈÅ ÍÏÎÅÙȭÓ 

worth of a £1 annuity, where the expected value of the annuity payments is 

computed as the discounted sum of annuity payments multiplied by survival 

probabilities, but where the annuity is priced at either the 50th  , 90th , or 95th  centile 
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of the distributions given in Figure 9. When priced from the median, MW is 

approximately one, because the median price and the expectation of the annuity 

payments are virtually the same.  When the life insurer prices from the 90th centile, 

MW is less than one and the discrepancy is larger the lower the interest rate 

(because the duration of the annuity rises and is where there is greater uncertainty). 

At more conservative pricing (95th  ÃÅÎÔÉÌÅɊȟ ÔÈÅ ÍÏÎÅÙȭÓ ×ÏÒÔÈ ÁÒÅ ÅÖÅÎ ÌÏ×ÅÒȢ 

[Table 5 about here] 

Panel A of the table shows the effect of changing interest rates and degree of VaR 

ÐÒÉÃÉÎÇ ÆÏÒ ÌÅÖÅÌ ÁÎÎÕÉÔÉÅÓ ÏÎ ÔÈÅ ÍÏÎÅÙȭÓ ×ÏÒÔÈ ÏÆ ÌÅÖÅÌ ÁÎÎÕÉÔÉÅÓȢ 0ÁÎÅÌ " ÃÏÍÐÕÔÅÓ 

MW for escalating annuities, which is one type of back-loaded annuity, and Panel 

C reports the difference in the MW  between level and escalating annuities. We can 

see from Panel C that at each interest rate, or at each centile of the distribution, the 

MW  of the escalating annuity is lower; and the difference is just under five per cent 

when annuities are priced at the 95th  centile, and interest rates are around five per 

cent, which is the approximate average value of the 10 year government bond yield 

over the period 1994-2012. This difference goes some way to explaining the 

ÄÉÆÆÅÒÅÎÃÅ ÉÎ ÔÈÅ ÁÃÔÕÁÌ ÍÏÎÅÙȭÓ ×ÏÒÔÈÓ ÏÆ ÌÅÖÅÌ ÁÎÄ ÂÁÃË-loaded annuit ies in Panels 

A and C of Table 2 illustrated in Figure 6.   

[Table 6 about here] 

In Table 6 we illustrate the robustness of our results to alternative estimation 

methods and mortality models.  The numbers in Table 6 again show the differences 

between the moÎÅÙȭÓ ×ÏÒÔÈ ÆÏÒ Á ÌÅÖÅÌ and escalating annuities, and where we are 

assuming that the life insurer prices annuities off the 90th centile. The columns 

reports the results based on: different sub-samples of the data (ages 60-100, 61-100 

and 65-100); different estimation methods (Least Squares or Maximum Likelihood); 

projections based on either a stochastic (S) or deterministic trend (D) ; and different 

mortality models (Lee-Carter and Cairns-Blake-Dowd).  The third column in Table 

6 repeats the penultimate column of Table 5 Panel C for ease of comparison. In all 

cases it can be seen that the differences in MW between level and escalating 

annuities are positive, meaning that irrespective of the mortality model, the data  

ÓÁÍÐÌÅ ÏÒ ÔÈÅ ÁÓÓÕÍÐÔÉÏÎÓ ÁÂÏÕÔ ÔÈÅ ÔÒÅÎÄ ÉÎ ÌÉÆÅ ÅØÐÅÃÔÁÎÃÉÅÓȟ ÔÈÅ ÍÏÎÅÙȭÓ worth 



22 

 

of level annuities is higher than that for escalating annuities when life insurers price 

at the 90th  centile of the annuity value distribution but the researcher uses the 

expected annuity value. 

Although the CBD results in the final three columns of Table 6 suggest a smaller 

effect on the money's worth than for the Lee-Carter model, comparing these two 

estimates depends partly on which model is considered the better predictor of 

annuity values. In a comparison of six mortality models, Dowd et al (2010) provide 

results suggesting that the CBD model is slightly better at predicting future 

mortalities but that the Lee -Carter model is better at predicting annuity values.  

In Figure 10 we illustrate our final calculations making use of the actual interest 

ÒÁÔÅÓ ÔÈÁÔ ×ÅÒÅ ÕÓÅÄ ÉÎ ÔÈÅ ÍÏÎÅÙȭÓ ×ÏÒÔÈ ÃÁÌÃÕÌÁÔÉÏÎÓ ÉÎ &ÉÇÕÒÅÓ 4-6.  The diagram 

ÓÈÏ×Ó ÔÉÍÅ ÓÅÒÉÅÓ ÏÆ ÍÏÎÅÙȭÓ ×ÏÒÔÈÓ ÆÏÒ ÌÅÖÅÌȟ ÒÅÁÌ ÁÎÄ ÅÓÃÁÌÁÔÉÎÇ ÁÎÎÕÉÔÉÅÓ ÂÁÓÅÄ 

on an annuity provider pricing off the 90th centile of the annuity distribution . 

Notice, however, that we are using a constant set of mortality projections for the 

whole period, so our results are not directly comparable with the earlier graphs.  

Instead, Figure 10 isolates the effect that actual interest rate changes would have 

had on MW calculations had annuities been priced on the 90th centile . Figure 10 

reinforces our calculations in Table 5: a significant part of the difference between 

nominal and back-loaded ÍÏÎÅÙȭÓ worths is in part due to cohort risk. 

[Figure 10 about here] 

#ÏÍÐÁÒÉÎÇ ÔÈÅ ÍÏÎÅÙȭÓ ×ÏÒÔÈ ÏÆ ÔÈÅ ÔÈÒÅÅ ÐÒÏÄÕÃÔ ÔÙÐÅÓȟ ÔÈÅ ÆÉÇÕÒÅ ÓÈÏ×Ó ÔÈÁÔ 

while MW for real annuities is less than that for nominal, it is greater than that for 

escalating annuities, inconsistent with our empirical results in Section 3.2. This 

inconsistency with the data is exactly that same as that noticed by F&P (2002, pp.45-

46): an adverse selection separating equilibrium would also incorrectly predict that 

ÔÈÅ ÍÏÎÅÙȭÓ ×ÏÒÔÈ ÆÏÒ ÒÅÁl annuities would be between that of nominal and 

escalating annuities, given that during the sample period the inflation rate has 

averaged less than the 5%. While our model is unable to fit the data in this respect, 

the inconsistency emphasises the difficulty in identifying the two models of annuity 

pricing: both give the same wrong result since both utilise the feature that real and 

escalating annuities have longer durations than level annuities. 
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One additional explanation ÆÏÒ ÔÈÅ ÌÏ×ÅÒ ÍÏÎÅÙȭÓ ×ÏÒÔÈ ÆÏÒ Òeal annuities is that 

they have additional idiosyncratic risk: the number of real annuities sold is too small 

to achieve portfolio diversification and additional calculations suggests that this 

ÍÉÇÈÔ ÒÅÄÕÃÅ ÔÈÅ ÍÏÎÅÙȭÓ ×ÏÒÔÈ ÂÙ ÁÎ ÁÄÄÉÔÉÏÎÁÌ ÏÎÅ ÐÅÒÃÅÎÔȢ Details are provided 

in the Appendix A.5. Further, there may be higher costs of managing a portfolio of 

real bonds and some evidence for this is provided in Debt Management Office 

(2013). 

ίȢ 3ÕÍÍÁÒÙ ÁÎÄ #ÏÎÃÌÕÓÉÏÎÓ 

In this article we have provided estimates of the ÍÏÎÅÙȭÓ ×ÏÒÔÈ ÃÁÌÃÕÌÁÔÉÏÎÓ ÆÏÒ ÔÈÅ 

UK compulsory purchase market, and have shown that the finding in F&P (2002) 

established from a cross-section of annuity prices in 1998, that back-loaded 

ÁÎÎÕÉÔÉÅÓ ÈÁÖÅ Á ÌÏ×ÅÒ ÍÏÎÅÙȭÓ ×ÏÒÔÈ ÔÈÁÎ ÆÒÏÎÔ-loaded annuities is true over the 

whole period 1994-2012. F&P explain this as an adverse-selection separating 

equilibrium achieved by longer-lived individuals pur chasing back-loaded annuities. 

We have shown that an alternative model yields the same qualitative conclusions.  

Our model relies upon the fact that life insurers need to reserve against the 

uncertain evolution of cohort mortality, both for prudential reasons and because 

they are required to do so by government regulation.  Because back-loaded 

annuities have a higher proportion of pay-outs in the more distant future, they are 

inherently riskier products and require greater reserves. 

Because our model yields the same conclusions as the F&P (2002) model it is 

impossible to identify the  magnitude of the two effects from the data alone.  To 

address this problem we have quantified the importance of cohort mortality risk 

using the Lee-Carter model. Our results suggest that a substantial proportion of 

ÏÂÓÅÒÖÅÄ ÄÉÆÆÅÒÅÎÃÅÓ ÉÎ ÍÏÎÅÙȭÓ ×ÏÒÔÈÓ Æor different annuity products may be due 

to the relative risk.  Combined with other costs of annuity supply, which are 

ÃÏÎÖÅÎÔÉÏÎÁÌÌÙ ÉÇÎÏÒÅÄ ÉÎ ÍÏÎÅÙȭÓ ×ÏÒÔÈ ÃÁÌÃÕÌÁÔÉÏÎÓȟ ÔÈÉÓ ÓÕÇÇÅÓÔÓ Á ÍÕÃÈ ÓÍÁÌÌÅÒ 

rôle for adverse selection. 
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&ÉÇÕÒÅÓ ÁÎÄ ÇÒÁÐÈÓ 

Figure 1 Mortality assumptions of life insur ers 

 

The figure compares the CMI benchmark projected future mortal ity  with the company 
specific mortality assumptions provided in the FSA returns. For explanation of mortality 
tables used see footnote to Table 1. 

 

Figure 2 : Two models of survival probabilities.  

Panel A      Panel B 

 

The figure shows survival probabilities as a function of age. Panel A shows the survival 
probabilities for two risk types and the average of these survival probabilities. Panel B 
shows the average survival probability and the upper and lower confidence intervals. 
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Figure 3: UK Annui ty Rates (Male, Compulsory Purchase) and Bond Yields  

 

Figure shows monthly time series for 1994-2012 of average annuity rates (across providers) 
for 65-year old male for level and index-linked annuities (1998-2012); yields on nominal 
ten-year government and commercial bonds; and real yields on index-linked ten -year 
government bonds. 
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Figure 4ȡ -ÏÎÅÙȭÓ ×ÏÒÔÈ ÃÁÌÃÕÌÁÔÉÏÎÓȟ ÌÅÖÅÌ ÁÎÎÕÉÔÉÅÓ ÆÏÒ ÄÉÆÆÅÒÅÎÔ ÁÇÅÓ 

 

Figure shows MW of level annuities for males aged 60, 65, 70 over four sub-periods 
corresponding to relevant mortality tables (PML80 refers to data from 1994-2001; PML92 
refers to data from 1999-2002; medium cohort refers to data from 2002-2005; and PNML00 
refers to data from 2005 to 2012). 
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Figure 5ȡ -ÏÎÅÙȭÓ ×ÏÒÔÈ ÃÁÌÃÕÌÁÔÉÏÎÓȟ ÄÉÆÆÅÒÅÎÔ ÇÕÁÒÁÎÔÅÅ ÐÅriods, male, 65  

 

Figure shows MW of level annuities for males aged 65 by guarantee (none, 5-year, and 10-
year guarantee), over four sub-periods corresponding to relevant mortality tables; see 
footnote to Figure 4.  
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Figure 6ȡ -ÏÎÅÙȭÓ ×ÏÒÔÈ ÃÁÌÃÕÌÁÔÉÏÎÓȟ different types of annuity, male 65  

 

Figure shows MW of level, index-linked (real) and escalating annuities for males aged 65, 
over four sub-periods corresponding to relevant mortality tables; see footnote to Figure 4.   
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Figure 7: Estimated parameters from Lee -Carter Model  

 

 
The figure shows that results of our baseline estimates of the Lee-Carter model, with the 
estimated alphas and betas being approximately linear in age, and the kappa following a 
stochastic trend over the years 1983-2000.  
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Figure 8: Fan chart of survival probabilities, male 65  

This fan chart shows uncertainties surrounding the projections of survival probabilities, 
and this uncertainty is reflected by the shading in the fan charts. The central heavy line 
shows the most likely outcome (median), the two solid lines either side of the median show 
the 75th and 25th percentiles, and the dotted lines show the 95th and 5th percentiles. 
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Figure 9: Annuity Value Distributions, male 65  

 

Figure illustrates (for different interest rates,  ranging from -1% to 10%) the density 
functions of the present value of a £1 life annuity, based on the distribution of survival 
probabilities . 
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Figure 10: -ÏÎÅÙȭÓ ×ÏÒÔÈÓ ÕÓÉÎÇ ÁÃÔÕÁÌ ÙÉÅÌÄÓ 

 

Figure shows time series of ÍÏÎÅÙȭÓ ×ÏÒÔÈÓ ÆÏÒ ÌÅÖÅÌȟ ÒÅÁÌ ÁÎÄ ÅÓÃÁÌÁÔÉÎÇ ÁÎÎÕÉÔÉÅÓ based on 
an annuity provider pricing off the 90 th centile  of the annuity distribution . 
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4ÁÂÌÅÓ 

Table 1: Summary of mortality assumptions in the FSA  returns  

Company Mortality assumption  

Aviva Life 88.5% of PCMA00 

Canada Life 89% of RMV00 (plus further adjustments) 

Hodge Life 65% of PCMA00 

Legal and General 69.5% of PCMA00 (plus further adjustments) 

Prudential  95% of PCMA00 

Standard Life 88.4% of RMC00 

The table reports the mortality assumptions and mortality tables used by the main annuity 
providers. Mortality table PCMA00 provides the mortalities of members of occupational 
defined-benefit pension schemes administered by life insurers;  RMC00 and RMV00 
summarise the mortality evidence of retirement annuity contracts for self-employed workers; 
2-6 ÉÓ ÆÏÒ ÐÅÎÓÉÏÎÅÒÓ ÉÎ ÒÅÃÅÉÐÔ ÏÆ Á ÐÅÎÓÉÏÎ ɉȰÖÅÓÔÅÄȱɊ ÁÎÄ 2-# ÉÓ ÆÏÒ ÂÏÔÈ ÐÅÎÓÉÏÎÅÒÓ ÉÎ 
ÒÅÃÅÉÐÔ ÏÆ Á ÐÅÎÓÉÏÎ ÁÎÄ ÆÏÒ ÔÈÏÓÅ ÓÔÉÌÌ ÍÁËÉÎÇ ÃÏÎÔÒÉÂÕÔÉÏÎÓ ɉȰÃÏÍÂÉÎÅÄȱɊȢ 
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Table 2: Monthly Time Series Properties of Nominal Pension Annuity for 65 -

year old males and various alternative bond yields  

  Annuity 

Rate for 

65-year old 

males 

Long-term:  

10 year 

Governmen

t Bond Yield 

Short-term:  

Bank of 

England Base 

rate 

Interest 

rates on 

retail 

term 

deposits 

Difference in 

Annuity Rate 

and 

Government 

Bond Yield 

Panel A: Aug 1994 ɀ April 2012 

Mean 7.96% 5.10% 4.43% 3.21% 2.86% 

St.Dev. 1.70% 1.49% 2.09% 1.54%  

Correlation 0.93    

Panel B: Aug 1994 ɀ July 2007 

Mean 8.54% 5.59% 5.34% 3.81% 2.95% 

St. Dev. 1.63% 1.38% 1.07% 1.18%  

Correlation 0.92    

Panel C: Aug 2007 ɀ Apr 2012 

Mean 6.40% 3.77% 1.88% 1.62% 2.63% 

St. Dev. 0.49% 0.79% 2.12% 1.23%  

Correlation 0.88       

The table presents descriptive statistics on the monthly time series of average nominal 
annuity rates in the compulsory annuity market (CPA), long-term and short-term 
government bond yields and rates on retail term deposits, over the period 1994 to 2012 in 
Panel A, and for two sub-periods: 1994-2007 in Panel B, and 2007-2012 in Panel C. Annuity 
data provided by MoneyFacts and all bond data are taken from the Bank of England web-
site. 
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Table 3: Monthly Time Series Properties of Real Pension Annuity for 65 -year 

old m ales and various alternative bond yields  

  RPI-linked 

Annuity Rate 

for 65-year old 

males 

Long-term:  

10 year Real 

Government 

Bond Yield 

Difference in Real 

Annuity Rate and 

Real Government 

Bond Yield 

Panel A: Sept 1998 ɀ April 2012 

Mean 4.93% 1.60% 3.34% 

St.Dev. 0.95% 0.77%  

Correlation 0.81  

Panel B: Sept 1998 ɀ July 2007 

Mean 5.43% 2.02% 3.41% 

St. Dev. 0.78% 0.35%  

Correlation 0.71  

Panel C: Aug 2007 ɀ Apr 2012 

Mean 4.01% 0.80% 3.20% 

St. Dev. 0.34% 0.73%  

Correlation 0.88   

The table presents descriptive statistics on the monthly time series of average real annuity 
rates in the compulsory annuity market (CPA) and real long-term government bond yields 
over the period 1994 to 2012 in Panel A, and for two sub-periods: 1994-2007 in Panel B, and 
2007-2012 in Panel C. 
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Table 4ȡ 4ÅÓÔÉÎÇ ÆÏÒ $ÉÆÆÅÒÅÎÃÅÓ ÉÎ -ÏÎÅÙȭÓ ×ÏÒÔÈÓ ÂÙ ÁÇÅȟ ÁÎÄ ÐÒÏÄÕÃÔ ÔÙÐÅ 

  1994.ix -

2000.xii: 80 

Life-Table 

t-test 1998.ix -  

2003.xii: 92 

Life-Table 

t-test 2001.i - 

2004.xii: 

medium 

cohort 

t-test 2004.v -

2012.iv: oo 

Life-Table 

t-test 

Panel A: Different Ages 

Level, NG, male 60 Obs. 77  65  48  96  

Mean 0.886 8.68***  0.926 5.54***  0.916 4.64* 0.864 6.55***  

St.dev 0.011  0.068  0.072  0.024  

Level, NG, male 65 Obs. 77  65  48  96  

Mean 0.866 Base-case 0.909 Base-case 0.927 Base-case 0.859 Base-case 

St.dev 0.013  0.061  0.069  0.021  

Level, NG, male 70 Obs. 77  65  48  96  

Mean 0.845 12.42*** 0.889 6.15***  0.933 1.94* 0.854 4.16***  

St.dev 0.016  0.053  0.063  0.018  

Level, NG, male 75 Obs. 41  65  48  96  

Mean 0.812 15.18*** 0.872 6.05***  0.925 0.2 0.850 4.43***  

St.dev 0.014  0.046  0.052  0.017  

Panel B: Different Guarantees  

Level, 5-year guarantees, 

male 65 

Obs. 77  65  48  96  

Mean 0.881 29.00*** 0.915 10.67*** 0.932 6.39***  0.867 48.42*** 

St.dev 0.014  0.059  0.067  0.021  

Obs.  0  23  35  96  
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Level, 10-year 

guarantees, male aged 65 

Mean    0.847 -7.02***  0.893 -0.81 0.873 -17.80*** 

St.dev    0.029  0.032  0.022  

Panel C: Different products  

Real (RPI-linked), NG, 

male 65 

Obs. 28  64  48  96  

Mean 0.784 18.61*** 0.840 18.57*** 0.867 16.11*** 0.768 15.58*** 

St.dev 0.007  0.063  0.064  0.027  

Escalating 5%, NG, male 

65 

Obs. 0  23  35  96  

Mean   0.770 11.50*** 0.856 7.05***  0.802 10.14*** 

St.dev   0.042  0.048  0.033  

4ÈÅ ÔÁÂÌÅ ÐÒÅÓÅÎÔÓ ÍÏÎÅÙȭÓ ×ÏÒÔÈ ÖÁÌÕÅÓ ÆÏÒ ÁÎÎÕÉÔÉÅÓ by age, guarantee and product type (real and escalating), for four sub-periods 
corresponding to the relevant mortality tables (PML80 for data from 1994-2001; PML92 for data from 1999-2002; medium cohort for data 
from 2002-2005; and PNML00 for data from 2005 to 2012). The first row in Panel A reports the MW of the base case of a level annuity for 
male aged 65 with no guarantee (NG)  4ÈÅ ÃÏÌÕÍÎ ȰÔ-ÔÅÓÔȱ ÒÅÐÏÒÔÓ Á Ô-test on thÅ ÄÉÆÆÅÒÅÎÃÅÓ ÏÆ ÍÁÔÃÈÅÄ ÐÁÉÒÓȟ ÉȢÅȢ ÃÏÍÐÁÒÅÓ ÔÈÅ ÍÏÎÅÙȭÓ 
worth of the relevant annuity product with the base -case of the equivalent level annuities NG, male aged 65. The standard errors for these 
tests are Newey-West standard errors with 10 lags. Where *, **, *** denotes significance at 90, 95 and 99 per cent respectively. 
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Table 5ȡ 3ÔÏÃÈÁÓÔÉÃ -ÏÎÅÙȭÓ 7ÏÒÔÈ #ÁÌÃÕÌÁÔÉÏÎÓ 

  Panel A: 

Money's worth of level annuities 

Panel B: 

Money's worth of escalating 5% 

annuities 

Panel C: 

Difference in 

money's worth  

Quantile: 0.5 0.9 0.95  0.5 0.9 0.95  0.9 0.95 

Interest 

rate 

          

-1% 1.003 0.899 0.875  1.015 0.825 0.781  0.075 0.094 

0% 1.002 0.910 0.890  1.011 0.843 0.803  0.069 0.086 

1% 1.001 0.920 0.902  1.008 0.860 0.824  0.062 0.078 

2% 1.001 0.929 0.913  1.006 0.875 0.843  0.055 0.071 

3% 1.000 0.937 0.923  1.004 0.889 0.860  0.049 0.063 

4% 1.000 0.943 0.931  1.003 0.901 0.876  0.044 0.055 

5% 1.000 0.949 0.938  1.002 0.912 0.890  0.038 0.049 

6% 1.000 0.954 0.944  1.001 0.921 0.902  0.034 0.043 

7% 1.000 0.959 0.950  1.000 0.930 0.913  0.030 0.037 

8% 0.999 0.963 0.955  1.000 0.937 0.922  0.026 0.033 

9% 0.999 0.966 0.959  1.000 0.943 0.929  0.023 0.030 

10% 0.999 0.969 0.963   1.000 0.949 0.936  0.021 0.026 

Panels A and B of the table shows the ÍÏÎÅÙȭÓ ×ÏÒÔÈ ÏÆ Á ΜΫ ÁÎÎÕÉÔÙ ɉÎÏÍÉÎÁÌ ÁÎÄ ÅÓÃÁÌÁÔÉÎÇ 5%) at different interest rates, where MW is the 
ratio of the expected value of the annuity payments, relative to the relevant percentile of the annuity distribution (50th, 90th , and 95th  
percentile). The survival projection s are made from the Lee-Carter model in equation (6)  using ages 61-100. Panel C shows the difference in 
the respective numbers in the first two panels. 
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4ÁÂÌÅ ΰȡ $ÉÆÆÅÒÅÎÃÅ ÉÎ ÍÏÎÅÙȭÓ ×ÏÒÔÈ ÃÁÌÃÕÌÁÔÉÏÎÓ ÕÓÉÎÇ ÁÌÔÅÒÎÁÔÉÖÅ ÍÏÒÔÁÌÉÔÙ ÍÏÄÅls 

 Lee-Carter Cairns-Blake-Dowd 

 Least Squares Maximum likelihood Maximum likelihood 

Data: 

ages 

60-

100 

 61-

100 

 65-

100 

 60-

100 

 61-

100 

 65-

100 

 60-

100 

61-

100 

65-

100 

Trend S D S D S D S D S D S D S S S 

-1% 0.119 0.022 0.075 0.020 0.089 0.025 0.040 0.018 0.077 0.027 0.077 0.028 0.013 0.008 0.010 

0% 0.118 0.020 0.069 0.017 0.082 0.022 0.037 0.016 0.070 0.024 0.069 0.024 0.011 0.007 0.009 

1% 0.113 0.018 0.062 0.015 0.073 0.019 0.034 0.015 0.062 0.021 0.062 0.021 0.010 0.007 0.008 

2% 0.109 0.016 0.055 0.012 0.065 0.016 0.032 0.013 0.055 0.018 0.055 0.018 0.009 0.006 0.008 

3% 0.104 0.014 0.049 0.011 0.057 0.014 0.029 0.012 0.048 0.016 0.048 0.016 0.008 0.006 0.007 

4% 0.099 0.013 0.044 0.009 0.051 0.012 0.026 0.011 0.042 0.014 0.042 0.013 0.008 0.005 0.006 

5% 0.092 0.011 0.038 0.008 0.044 0.011 0.024 0.009 0.037 0.012 0.037 0.012 0.007 0.005 0.006 

6% 0.085 0.010 0.034 0.007 0.039 0.009 0.022 0.008 0.032 0.010 0.032 0.010 0.006 0.004 0.005 

7% 0.079 0.009 0.030 0.006 0.035 0.008 0.020 0.008 0.028 0.009 0.028 0.009 0.006 0.004 0.005 

8% 0.073 0.008 0.026 0.005 0.031 0.007 0.018 0.007 0.024 0.008 0.024 0.008 0.005 0.004 0.005 

9% 0.067 0.007 0.023 0.005 0.027 0.006 0.016 0.006 0.021 0.007 0.021 0.007 0.005 0.003 0.004 

10% 0.062 0.006 0.021 0.004 0.025 0.005 0.014 0.005 0.018 0.006 0.018 0.006 0.004 0.003 0.004 

The tables ÓÈÏ× ÔÈÅ ÄÉÆÆÅÒÅÎÃÅ ÂÅÔ×ÅÅÎ ÔÈÅ ÍÏÎÅÙȭÓ ×ÏÒÔÈ ÆÏÒ Á ÌÅÖÅÌ ÁÎÎÕÉÔÙ ÁÎÄ ÔÈÅ ÍÏÎÅÙȭÓ ×ÏÒÔÈ ÆÏÒ ÁÎ ÅÓÃÁÌÁÔÉÎÇ ÁÎÎÕÉÔÙȟ ×ÈÅÒÅ 
each column reports the results based on a different mortality model (Lee-Carter or Cairns-Blake-Dowd), or a different sub-sample of 
the data. Projection is either via a stochastic trend (S) or a deterministic trend (D) and in all cases it is assumed that the life insurer prices 
annuities off the 90th centile . The third column ( model estimated using ages 61-100 and projected with a stochastic trend) repeats the 
penultimate column of Table 5 Panel C.
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!ÐÐÅÎÄÉÃÅÓ  
 

!ȢΫ !ÌÔÅÒÎÁÔÉÖÅ ÔÅÓÔÓ ÏÆ ÄÉÆÆÅÒÅÎÃÅÓ ÉÎ ÔÈÅ ÍÏÎÅÙȭÓ ×ÏÒÔÈ 

Table A1: Tests of differences in the log-ÍÏÎÅÙȭÓ ×ÏÒÔÈÓȟ ÍÁÌÅ ÁÇÅÄ δγȟ ÌÅÖÅÌȟ ÎÏ-

guarantee 

 1994.ix -

2000.xii: 80 

Life-Table 

1998.ix -  

2003.xii: 92 

Life-Table 

2001.i - 

2004.xii: 

medium 

cohort 

2005.iii  -

2012.iv: oo 

Life-Table 

Panel A: Different ages (level annuities, no guarantee) 

Male 70 8.48***  

(n = 77) 

6.02***  

(n = 65) 

4.46***  

(n = 48) 

6.76***  

(n = 87) 

Male 70 -11.66*** 

(n = 77) 

-6.72***  

(n = 65) 

2.06* 

(n = 48) 

-4.23***  

(n = 87) 

Male 75 -14.15*** 

(n = 41) 

-6.52***  

(n = 65) 

-0.08 

(n = 48) 

-4.51***  

(n = 87) 

Panel B: Different guarantees (level annuities, male 65) 

5-year guarantee 32.26*** 

(n = 77) 

8.36***  

(n = 65) 

5.53***  

(n = 48) 

54.07*** 

(n = 87) 

10-year guarantee  6.28***  

(n = 23) 

0.88 

(n = 35) 

18.23*** 

(n = 87) 

Panel C: Different back-loading (no guarantee male 65) 

Real (RPI-linked) -19.15*** 

(n = 28) 

-15.50*** 

(n = 64) 

-22.28*** 

(n = 48) 

-15.01*** 

(n = 87) 

Escalating 5%  -9.59***  

(n = 23) 

-6.66***  

(n = 35) 

-9.36***  

(n = 87) 

The table presents t-ÔÅÓÔÓ ÆÏÒ ÔÈÅ ÅÑÕÁÌÉÔÙ ÏÆ ÍÏÎÅÙȭÓ ×ÏÒÔÈ ÖÁÌÕÅÓ ÆÏÒ ÄÉÆÆÅÒÅÎÔ ÁÎÎÕÉÔÙ ÔÙÐÅÓȟ 
ÁÎÁÌÏÇÏÕÓ ÔÏ 4ÁÂÌÅ ήȟ ÂÕÔ ÉÎÓÔÅÁÄ ÏÆ ÔÅÓÔÉÎÇ ×ÈÅÔÈÅÒ ÔÈÅ ÍÏÎÅÙȭÓ ×ÏÒÔÈÓ ÁÒÅ ÅÑÕÁÌȟ ÉÔ ÔÅÓÔÓ 
whether the log-ÍÏÎÅÙȭÓ ×ÏÒÔÈÓ ÁÒÅ ÅÑÕÁÌ (again using a matched pairs test). In every case 
an annuity type is compared to the level annuity without guarantee for a male aged 65. The 
standard errors for these tests are Newey-West standard errors with 10 lags, but other lag 
lengths led to very similar results. Where *, **, *** denotes significance at 90, 95 and 99 per 
cent respectively. 
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!Ȣά %ÓÔÉÍÁÔÉÎÇ ÔÈÅ ,ÅÅȤ#ÁÒÔÅÒ ÍÏÄÅÌ 

In this section we explain our implementation of the  model introduced by Lee and 

Carter (1992); proofs of the results and further exposition can be found in Girosi & 

King (2008, pp.34.ff) and Pitacco et al (2008, pp.169-173 & 186.ff.).  We estimate 

equation (6) in the main text,  

(A.1) ὰὲρ ὴȟ ὰὲήȟ  ‖ ‐ȟ      ‐ȟ ͯὔπȟ„    

This specification does not completely identify the parameters, so identifying 

restrictions (which have no effect on the analysis) are used: 

(A.2)        В‖ πȟ       В  ρ. 

We consider two ways to estimate the parameters. First, we use Least Squares, the 

original method proposed by Lee and Carter (1992) and still treated as the 

conventional way to estimate the model in Girosi and King (2008) and Pitacco et al 

(2008): if life insurers and actuaries were using a Lee-Carter model during the period 

1994-2011, it is lik ely that they were using a Least Squares estimator. 

A sample of the death-rate data that we use are shown in the table below: 

 1983 1984 . . . 2000 

60 0.013 0.015  0.011 

61 0.010 0.007  0.010 

62 0.012 0.019  0.010 

63 0.019 0.014  0.009 

64 0.034 0.021  0.018 

65 0.021 0.021  0.012 

. . .     

100 0.174 0.517  0.229 

 

It can be seen that our data set for ages 60-100 can be arranged in a 41 18³  matrix , 

more generally in an ὢ Ὕ matrix .  We denote the logarithm of this matrix as  

(A.3) Ἕ ὰὲήȟ ᶰᴙ ᴙ  
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(nb ages in rows, years in columns). The least-squares estimation of the intercept 

term is straight-forward and intuitive: given the constraint that  В‖ π, just take 

the row means to get 

(A.4) 

2000

,1983
ln

Ĕ
18

x tt
x

q
a ==
ä

 

We stack the estimates of the alphas into an ὢ ρ vector ♪  and obtain the de-

(row)meaned data 

(A.5) ἝḳἝ ♪  

where  is a row vector of ones.  We estimate the uncertainty in our values of 

alpha(hat) using the conventional standard errors of the means. 

To estimate the betas and kappas, note that, using the singular-value-decomposition 

theorem, the ὢ Ὕ matrix Ἕ can be written as 

(A.6) Ἕ ἌἘἕ 

where L is a diagonal matrix with the singular values put in descending order and the 

vector Ἄ contains the principal components.  The estimates of  are just the first 

column of the matrix  Ἄ and the estimates of ‖ are just the first row of ἕ.  To estimate 

the uncertainty in our values of beta(hat) using the bootstrap procedure suggested in 

the appendix of Lee and Carter: denote the residuals as 

(A.7) ‐Ƕȟ ὰὲήȟ  ‖Ƕ   

then repeatedly re-sample with replacement residuals and add them to the fitted 

value of Ἕ.  The resulting data set can be used to generate new values of beta(hat). 

We use 500 bootstrap replications to calculate the covariance matrix of the betas. As 

in Lee and Carter (1992) we assume that the betas are independent of the alphas. 

The only remaining issue is how many of the data to use. Many of the death rates for 

ages below 60 are zero, so it is impossible to take logs: there is one observation for 

which the death rate for age 60 is zero. For this reason we consider three sub-samples 

of the data: ages 60-100 (where we replace the zero death by half a death); ages 61-100 

(the largest data set with no zero death rates) and ages 65-100 (the smallest data set 

which still enables us to estimate an annuity for a 65-year old). 
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A comparison of the Lee-Carter parameters is shown in the Figure A1 below: 

 

Figure A1: Estimates of the Lee -Carter parameters using different sub -

samples of the data.  

 

The figure shows that results of Lee-Carter model parameters (alpha, beta, kappa) for 
different sub-samples of the data. 

 

An alternative estimation procedure would be to use maximum likelihood, which is 

possible for us since we have data on both the exposed-to-risk ( i.e. number of 

individuals facing the hazard of death) and the number of deaths. We now amend 

equation (A.1) so that the death probability is written  

(A.8) ήȟ Ὡὼὴ ‖  

The likelihood is  

(A.9) Б Б ὅὔȟȟὈȟήȟ
ȟ ρ ήȟ

ȟ ȟ
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where ὅὔȟȟὈȟ  iis the combinatorial function, ὔȟ is the number of lives (exposed 

to risk) and Ὀȟ is the number of deaths. The log-likelihood (ignoring the constant) 

is 

(A.10) ВВ Ὀȟ ‖ ὔȟ Ὀȟὰὲρ Ὡὼὴ ‖   

which can be maximised subject to the identifying constraints in (A.2). As with our 

Least Squares estimates estimated the covariances of the alphas and betas by 

bootstrapping. To get some idea of the goodness of fit, we plot actual and fitted death 

rates for models estimated by both Least Squares and Maximum Likelihood in the 

figure below: 

 

Figure A2: Actual and fitted death rates from the Lee -Carter model  

 
The figure plots actual (one-year) death rates (solid black line) for selected ages and 
corresponding fitted death rates from the Lee-Carter model estimated by Least Squares (top 
panel, dashed red line) and Maximum Likelihood (bottom panel, dotted blue line). 

 

The final issue is the dynamic model of the kappas to allow projection into the future.  


